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Abstract. When  a  bubble  in  a  liquid is subjected to a 
periodic  sound field, the  resulting  bubble  oscillations  can 
interact  with  the  sound field, giving rise to  the  primary 
Bjerknes  force. A simple  undergraduate-level  derivation, 
and  a  graphical  illustration of the  underlying  processes, 
are  given. 

1. Introduction 

The  translational  motions  of  bubbles within an acous- 
tic field are of considerable significance  in governing 
the effects of  acoustic  cavitation.  An  understanding 
of these motions is therefore  important  to disciplines 
such  as  material  erosion,  cavitation  chemistry,  and 
clinical therapy by ultrasound.  Excluding  buoyancy, 
the Bjerknes  forces are  the  most  potent  driving 
forces  for  bubble  translations in  a  non-flowing 
liquid. 

When a gas  bubble  in liquid is subjected  to  an 
acoustic  pressure field, it can  undergo  volume  pulsa- 
tions. If the  acoustic  pressure  gradient is non-zero, 
then  it  can  couple  with  the  bubble  oscillations  to 
produce a translational  force  on  the  bubble.  This is 
the  primary Bjerknes force.  Bubbles which are smaller 
than  the size that is resonant with the  sound field 
travel up a pressure  gradient,  and  bubbles of  a size 
larger  than  resonance  travel  down a pressure  gradient. 
Therefore,  in a planar  standing-wave field, bubbles of 
smaller than  resonance size collect a t  the  pressure 
antinodes, whilst those  larger  than  resonance 
aggregate  at  the  pressure  nodes  (Leighton et a1 
1988). 

The principle  of the  primary Bjerknes force  was 
first  formulated by Bjerknes (1906), though Blake 
(1949) gave the first satisfactory  account of  its origins. 
However  there is no readily available  formulation  of 
the  phenomenon in the  literature,  and so this paper 
attempts  to  provide  one,  as well as giving a graphical 
representation of the processes involved.  The  pro- 
cedure is a good  illustration of the effects of  forced 
oscillation on a resonance system, and is based on  the 
formulation of Walton  and  Reynolds (1984) which 
contains  some  inaccuracies. 

Rhumb. Quand  une  bulk  dans  un  liquide est soumise 
a un  champ  acoustique  pkriodique, les oscillations 
resultantes  de  cette  bulk  peuvent  interagir  avec le champ 
acoustique,  donnant lieu aux  forces  de  Bjerknes  primaires. 
Nous presentons  une  derivation  simple, au niveau 
etudiant,  de  son  expression  ainsi  qu’une  illustration 
graphique du processus  sous-jacent. 

2. Theory 

A body of volume V in  a  pressure gradient V P  
experiences  a force - V V P .  If  this quantity varies in 
time, then  the net force  on  the body  is  simply the time 
average of  this: 

F = - ( V ( t ) V P ( r ,  t ) ) .  (1) 

Now  consider a bubble in a sound field. The pres- 
sure  gradient oscillates, as  does  the  bubble  volume. It 
can be shown  that  the  bubble  radius, R(t) ,  varies  as: 

20  4pR 
R R  

where R. is the  equilibrium  bubble  radius, P,, the 
hydrostatic pressure, P, is the  vapour  pressure,  and p ,  
Q and p are  the liquid  density, surface  tension  and 
viscosity respectively. The  polytropic index of the  gas 
within the  bubble is given by K, and P(t)  is the time- 
varying  acoustic  pressure.  This  equation is known  as 
the RPNNP, or Rayleigh-Plesset, equation. A  simple 
derivation  has been given in the  appendix. 

An  investigation  into  the  small-amplitude limiting 
form  of  this  equation  provides useful approximations 
to  the  resonance  behaviour  of  bubbles.  Firstly, 
assume  the time-varying  pressure  (which is superim- 
posed on  the  constant  hydrostatic pressure, P o )  has 
the  form of a sinusoidal  sound wave of amplitude PA 
and  circular frequency W ,  i.e. 

P ( t )  = - PA sin ut (3) 

(it is conventional  to use the negative, rather  than  the 
positive, sinusoid). If vapour pressure and viscosity 
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P = Po + 2PA sin(ky)  cos(wt) 

p ,  
... '. 

Bubble volume 
( R o < R r )  v, 

0 

V = Vo(l  - (S/R,)(<,sin(ky) cos(wt)) 

1 

. ... 
kY 2x 

V = Vo(l - (3/Ro)(<,sin(ky)  cos(wt + T I ) )  

V V P  
VVP = 2kPAVo(l - ( 3 / 2 R 0 ) ( ~ , s i n ( 2 k y ) c o s ( w t ) c o s ( w t ) )  

. . .  

Figure 1. The key  functions  are  plotted  against  a  common  spatial  axis  for  two  times  (corresponding 
to wt = 0 (-) and ut = TI (. ' '  .)). From  the  plot of P, VP can  be  deduced. The bubble  volume V 
can be inferred  from  the  theory of forced  harmonic  oscillation  (see  the  text),  for  bubbles of less 
than,  and  greater than, resonance  size  (giving  the  third  and  fourth  plots).  Simple  multiplication of 
the  appropriate  bubble  volume  graph  with  the VP graph  gives  the  two VVP plots  (the  fifth and sixth 
graphs). The negative of the time  average of these  (the  bottom  two  plots)  provides  the  primary 
Bjerknes  forces,  illustrated by arrows  in  the  bottom  two  plots.  The  force  is  to  the  left  (indicated by 
c) when - (VVP) is  negative,  and to the  right  (indicated  by -+) when - (VVP) is  positive. By 
comparing  these  arrows  with  the  plot of the  pressure P in  a  standing-wave  field  (the  first  graph),  it 
can be  seen that bubbles of less than resonance  size  travel to the  pressure  antinodes,  and 
bubbles of greater than resonance  size  travel to the  pressure  nodes. 

are deemed negligible, and  small-amplitude  variations i:+ w:r = (P,/pR,)sinwt ( 5 )  
in bubble  radius  about  the limiting  value are assumed 
so that where W, is the  resonant frequency  of a bubble, and is 

given by 
R(t) = R, + r ( t )  (4) 

where r << R,,, then in an expansion  to first order in (6) 
powers of R;', equation (2) becomes 
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In  the  case of an air  bubble in water  at P, = IO5 Pa, 
this  reduces to  the expression 

v,R, = 3Hzm" ( 7 )  

where v, is the  linear  resonance frequency (Minnaert 
1933). 

In  the  normal discussion  of  forced harmonic oscil- 
lation,  the  response of  a given system to  driving 
frequencies  of above  and below resonance is con- 
sidered.  However in this  particular discussion we will 
consider  the  action of  a fixed driving frequency on 
bubbles of greater  than,  and less than,  resonant size 
(which, from  equation (7 ) ,  corresponds  to  bubbles 
with natural frequencies  of respectively less than,  and 
greater  than,  the  driving frequency). 

The  bubble  oscillations  correspond  to a familiar 
result from  the  theory of  forced harmonic oscillation: 
a bubble of substantially less than  resonant size oscil- 
lates in phase  with  the  sound field, and  bubbles  larger 
than  resonance oscillate n out of phase with the field. 
(This  can be seen by solving equation (5) for  the  radial 
velocity of the  bubble wall, and  comparing this with 
the  driving  force.  It  should be noted  that, since the 
positive driving pressure causes a reduction in 
volume,  then  the  bubble  volume will  be a minimum 
when the pressure is a maximum if the  two  are oscil- 
lating in phase.)  In this feature lies the  root  for  the 
basic  result  of the  primary Bjerknes  force: the 
quantity - ( V V P )  will be in one  direction  for 
bubbles with R, < R, and in the  opposite  direction  for 
those with R, > R, (derived  schematically  in  figure 1). 
Therefore, in  a standing-wave field, bubbles of less 
than  resonant size travel up a pressure  gradient 
towards  the  pressure  antinodes,  and  those larger than 
resonance travel down  the  gradient  to  the  nodes. 

To formalise  the  argument, it  is  necessary to  con- 
sider  a spatial  dimension (given by y )  in  the  standing- 
wave field 

P( y,  t )  = Po + 2PA sin(ky)  cos(wt) (8) 

so that 
V P (  y ,  t) = 2k PA  COS(^^) COS(W~) (9) 

where k is the wavevector and P, is assumed  to be 
constant. 

If  a bubble is located  at  position y in  this sound 
field, and if 2PA <<Po, then  the  bubble  radius R(t) 
will oscillate  linearly as 

R(?) = R, - 5 cos(wt + a) (10) 

where the phase  term a equals  zero for bubbles  smaller 
than  resonance,  and  equals 7t for  bubbles  larger  than 
resonance.  The negative sign is taken since  a  positive 
acoustic  pressure  causes a reduction  in  bubble  volume 
when the  two  are in phase.  It  should be noted  that  the 
amplitude of the  radial oscillation is 

5 = 5, sin(ky) (1  1) 

i.e. it varies  sinusoidally  with position in the  sound 
field, in keeping  with the  acoustic  pressure  amplitude 

(5 ,  being  a constant,  with 5, << Ro). From  the  form 
taken by R(t) in equation (10) the  bubble volume 
V( t )  = 4nR($/3 may  consequently  approximate  to 
first order  as 

V ( { )  = K[l  - (35,/RO)sin(ky)cos(wt + a)] 

(12) 
when 6 = 4nRi/3,  the  equilibrium  bubble  volume. 
Substitution of equations (8) and (12) into  equation 
( l )  gives 

F = [3PAk5, v0 sin(2ky)1/(2%) (13) 
for  bubbles smaller than  resonance (i.e. when 2 = 0), 
and 

F = - [3PAkt0 V, sin(2ky)]/(2&) (14) 

for  bubbles  larger  than  resonance (i.e. for a = n). 

3. Concluslon 

By comparing  the sin(2ky) and  the - sin(2ky)  forces 
in equations (13) and (14) with  the sin(ky) variation of 
the  pressure field in equation (7 )  (see figure 1) it can 
be seen that if R, < R, the  bubble will move  to  the 
pressure antinode,  and if R, > R, it will move  to  the 
node. 

It  should be remembered  that  the primary Bjerknes 
forces described above  are active not  just in standing 
wave fields, but  in  any field containing a  pressure 
gradient.  Therefore in  a  focused acoustic field, 
bubbles below resonance will travel to  the focal  pres- 
sure  antinode,  and  those  larger  than  resonance will 
travel away from  the  focus. 

From a teaching perspective the  behaviour of a 
bubble in  a sound field provides a good  example of the 
action of  a  forced damped  oscillator. 
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Appendix.  The RPNNP equation 

This  equation describes the response  of  a  spherical 
bubble  to a  time-varying pressure field in an  incom- 
pressible liquid.  It is also  known as the Rayleigh-Ples- 
set equation.  The  derivation given here is based upon 
that in Walton  and  Reynolds (1984). 

At a  time t < 0, a bubble of radius R. is at rest in 
an  incompressible, viscous liquid.  The  hydrostatic 
pressure is P,, a constant.  At time t > 0, a  pressure 
P( t )  which  varies  with time is superimposed on P,, so 
that  the  liquid pressure at a point  remote  from the 
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bubble is P, = Po + P(t).  Consequently  the  bubble 
radius will change  to  some new value  R(t). During 
this  process, the liquid will acquire  a kinetic  energy  of 

+p jRx r24nr2dr 

where r is the  radial  coordinate.  Using  the liquid 
incompressibility condition  (dr/dt)/(dR/dt) = R2/r2 
the expression  in equation  (Al)  can be integrated  to 
give 2npR3(dR/df)*.  Equating this to  the difference 
between the  work  done  remote  from  the  bubble by 
P, (the  hydrostatic pressure there),  and  the  work 
done by the  hydrostatic pressure PL in the liquid just 
outside  the  bubble walls gives 

r R  
( R  (PL - P,)4nr2dr = 2nR3R2p. (A21 

If the  hydrostatic pressure  in a liquid of surface 
tension 0 is P,, then  the  internal pressure  of a  bubble 
(radius R , , )  within that liquid is P, + (20/R,,). 
Therefore  the pressure of the  gas (i.e. non-vapour) 
phase within the  bubble is Po + (20/R,) - P, (where 
P, is the  vapour  pressure). If the  hydrostatic pressure 
then  changes  to P,, the  bubble  radius will change  to 
R, and  the gas pressure within the  bubble will  be 
(Po + (20/R) - P,)(R,,/R)3",  assuming this  gas is a 
perfect gas. K is the  polytropic index  of the gas, which 
takes  a value between unity and y depending  on 
whether  the  gas behaves isothermally,  adiabatically, 
or with intermediate  characteristics.  Therefore  the 
pressure in the liquid  immediately beyond  the  bubble 
wall will be (Po + (2a/R,,) - P,)(Ro/R)3" - 20/R. 

In  fact  the  hydrostatic  pressure in the layer  of  water 
adjacent  to  the  bubble is, 

e o  

Poritsky (1952) shows  that  the final term,  contain- 
ing the viscosity p of the liquid, is required to  ensure 

lowed by differentiation  with  respect to  R gives 

R# + ; R 2  =-[(Po P 1 + g - P,)(+T' 

20  4pR 
R R  

Following  the suggestion of Lauterborn (1976), this 
equation is commonly referred to as the RPNNP 
equation in tribute  to  the  workers  who  contributed  to 
its formulation: Rayleigh (1917), Plesset (1949). Nol- 
tingk and  Neppiras (1950), Neppiras  and  Noltingk 
(1951) and  Poritsky (1952). A  more  rigorous  deriva- 
tion is given by Neppiras (1980). This  equation  must 
in general be solved numerically. 

The RPNNP equation gives the  small-amplitude 
approximation  to  the  resonant frequency of a bubble 
as 
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