

Radiological Exposure Devices

Erich Hrnecek

EC Joint Research Centre (JRC) ITU - Institute for Transuranium Elements Nuclear Safeguards & Security Karlsruhe, Germany

http://itu.jrc.ec.europa.eu http://www.jrc.ec.europa.eu

- Introduction
- Exposure Effects
- Accidents
- REDs
- Exercises

Potential Scenarios

- Radioactive Exposure Device (RED)
- Radiological Dispersal Device (RDD)
- Improvised Nuclear Device (IND)

Radioactive source out of legal control

Potential to expose people to lethal doses of radiation

Irradiation, no incorporation if sealed source

Dose assessment, medical monitoring

Psychological & Economical impact

RDD

Detonation of explosive device + radioactive material

Injury

External contamination

Incorporation

Psychological & Economical impact

IND

National emergency situation

Large number of victims

Effects: blast, heat, radiation

Irradiation, incorporation

External exposure: irradiation

Internal exposure: incorporation

Stochastic effects:

Propability of occurence increases with dose, no treshold dose e.g. cancer incidence

Deterministic effects:

Severity of effect increases with dose, treshold dose e.g. organ dysfunction, lens opacification, blood changes

Deterministic effects

Dose (whole body irradiation)	Effects
< 0.25 Sv	No clinically recognizable damage
0.25 Sv	Decrease in white blood cells
0.5 Sv	Increasing destruction of the leukocyte-forming organs (causing decreasing resistance to infection)
1 Sv	Marked changes in the blood picture (decrease in the leukocytes and neutrophils)
2 Sv	Nausea and other symptoms
5 Sv	Damage to the gastrointestinal tract causing bleeding and $\approx 50\%$ death
10 Sv	Destruction of the neurological system and $\approx 100\%$ death within 24 h

Ref.: K. H. Lieser, Nuclear and Radiochemistry: Fundamentals and Applicationss. VCH/Wiley 1997.

Nausea

Vomitting

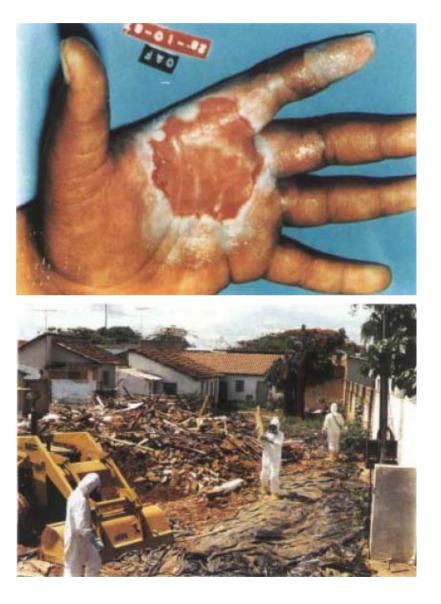
Headache

Diarrhoea

Weakness

Changes in blood (reduction in Lymphocytes)

Accidents



ITRAC-2: 2nd Advanced Training Course on Illicit Trafficking and Radiological Consequences with NUCLEONICA, 4 – 6 11 2009, ITU, Karlsruhe

1987, Goiânia, Brasil

- ¹³⁷Cs teletherapy unit source removed by scrap collectors, source capsule opened
- 54 persons hospitalized, 4 died
- 112.000 persons monitored
- Large psychological and economical impact

Source: IAEA, STI/PUB/815, Vienna, 1988

1994, Tammiku, Estonia

- **3 persons entered radioactive waste repository**
- **Removed ¹³⁷Cs radiation source**
- Source stored at home
- **5 persons with deterministic effects**
- 1 Person died

Source: IAEA, STI/PUB/1053, Vienna, 1998

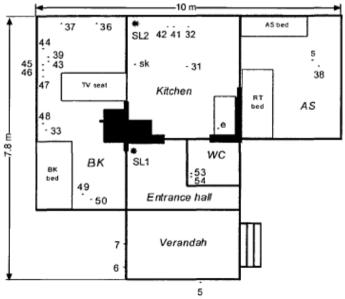


FIG. 3. The plan of the house in Kiisa. Possible source locations (SLI and SL2) are indicated by the large asterisks. The sample codes are given in Table III.

2000, Samut Prakarn, Thailand

⁶⁰Co teletherapy unit out of regulatory control

Teletherapy head stolen from unsecured storage area

Disassembled at junkyard

10 persons with deterministic effects

3 Person died

Source: IAEA, STI/PUB/1124, Vienna, 2002

2002, China

¹⁹²Ir put in office of business rival74 persons with irradiation symptoms

1995, Zheleznodorozhny, Russia

Criminal act ¹³⁷Cs source in door of truck, 5 months exposure, 1 dead

1993, Moscow, Russia

Radioactive source in chair of company director, 1 death

1991, Bratsk, Russia

2 similiar cases, 1 injury

1979, La Hague, France

Radioactive graphite fuel element plugs under driver's seat in car, person tried to kill his employer

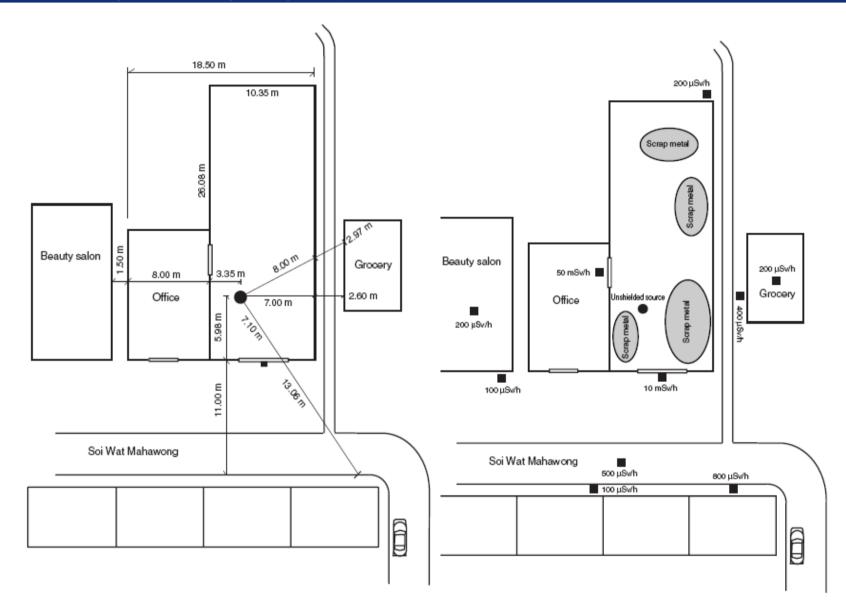
1972, Texas, USA

Man used ¹³⁷Cs sources to intentionally irradiate his 11 year old son after divorce

Source: http://www.johnstonsarchive.net/nuclear/radevents/index.html

2000, Samut Prakarn

Source activity?



17

ITRAC-2: 2nd Advanced Training Course on Illicit Trafficking and Radiological Consequences with NUCLEONICA, 4 - 6 11 2009, ITU, Karlsruhe

Measured: ⁶⁰Co, 20 mSv/h, ~6 m distance

Source activity?

- Dosimetry & Shielding
- Source activity without shielding
- Source activity with 10 cm Fe shielding (scrap metal)

19

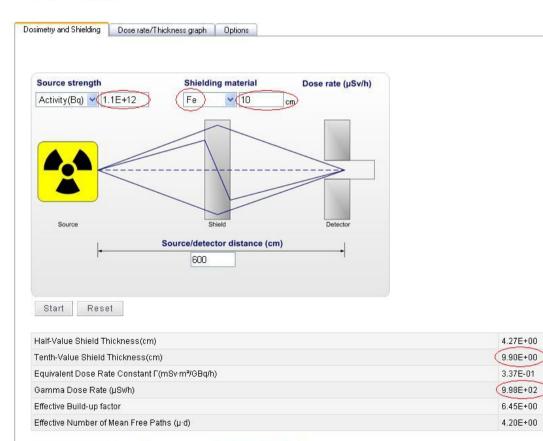
Element: Mass: Nuclide Mixtures Selector Co 💙 60 ~ Dosimetry and Shielding Dose rate/Thickness graph Options Source strength Shielding material Dose rate (µSv/h) Activity(Bq) 🔽 1E+12 Air ✓ 600 cm Source Shield Detector Source/detector distance (cm) 600 Reset Start Half-Value Shield Thickness(cm) 2.77E+04 Tenth-Value Shield Thickness(cm) 6.50E+04 Equivalent Dose Rate Constant (mSv·m²/GBq/h) 3.37E-01 Gamma Dose Rate (µSv/h) 9.31E+03 Effective Build-up factor 1.04E+00 Effective Number of Mean Free Paths (µ·d) 3.96E-02

Download 💿 Excel 🔘 CSV Separator: Semicolon (";") 🔽 🗹 Use field qualifier (")

Equivalent Dose Rate Constant Γ

 $\Gamma(mSv \cdot m^2/GBq/h) = 0.337 mSv m^2 / GBq h$

GBq = mSv m² / Γ = 10*36/0.337 = 1068 GBq = 1.1 TBq



21

ITRAC-2: 2nd Advanced Training Course on Illicit Trafficking and Radiological Consequences with NUCLEONICA, 4 - 6 11 2009, ITU, Karlsruhe

With 10 cm Fe shielding

Eleme	nt:	Mass:	SS:		
Co	~	60	~	4	Nuclide Mixtures Selector

Download Ocsv _{Separator:} Semicolon (",") 🔽 Use field qualifier (")

Result:

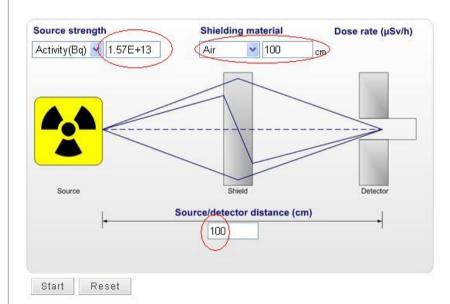
Dose rate decreased by a factor of ~ 10 with 10 cm Fe

Conclusion: as amount of shielding material is not well known only estimate possible

- **1.1 TBq without shielding**
- ~ 10 TBq with 10 cm Fe

Remark: source had 15.7 TBq

Next problem: recovery


Dose rate in 1 m distance for 15.7 TBq 60Co?

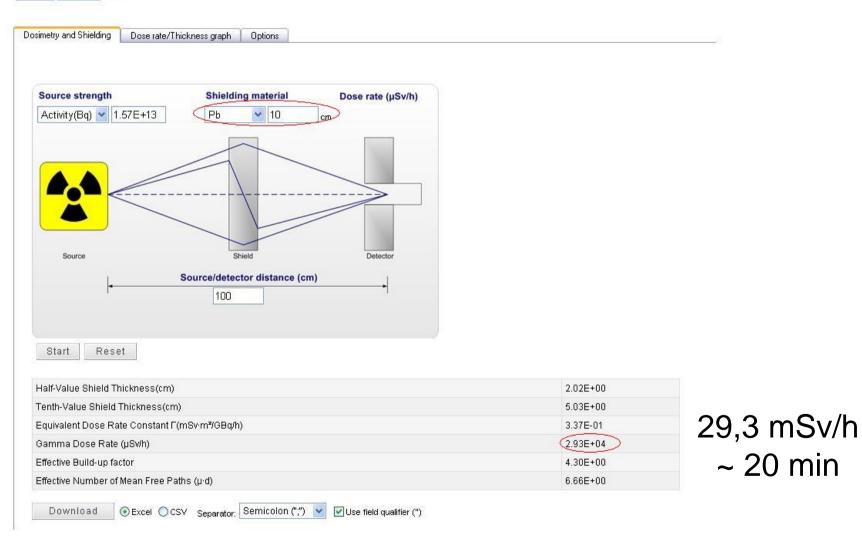
24

Half-Value Shield Thickness(cm)	2.77E+04
Tenth-Value Shield Thickness(cm)	6.50E+04
Equivalent Dose Rate Constant F(mSv·m³/GBq/h)	3.37E-01
Gamma Dose Rate (µSwh)	(5.29E+06)
Effective Build-up factor	1.01E+00
Effective Number of Mean Free Paths (µ·d)	6.59E-03

5.3 Sv/h

Download 📀 Excel 🔿 CSV Separator: Semicolon (",") 🔽 Use field qualifier (")

Recovery 2:


10 cm Pb shielding

What time allowed for 10 mSv?

26

For comparison:

15.7 TBq 137Cs, 1m distance

15.7 TBq 137Cs, 10 cm Pb, 1m distance

Dose rate?

Z	57 —	La135 19.5 h	La136	La137 6.0E4 y	La138 0.09 1.0E11 y	La139 stable 99.91	La140 1.68 d	La141 3.92 h	La142 1.52 h
→ N Select 51 Antimony 137 Element: Mass: Cs ▼ 137 ▼	56 —	Ba134 stable 2.417	Ba135 1.2 d stable 6.592	Ba136 3.1E2 ms stable 7.854	Ba137 2.55 m stable 11.232	Ba138 stable 71.698	Ba139 1.38 h	Ba140 12.77 d	Ba141 18.27 m
Zoom View: Q Q Q Q S View	55 —	Cs133 stable 100	Cs134 2.91 h. 2.07 y	Cs135	Cs136	Cs137 30.06 y	Cs138 2.91 m 33.41 m	Cs139 9.27 m	Cs140 1.06 m
Select colour theme: Karlsruhe	54 –	Xe132 8.39 ms stable 26.89	Xe133 2.19 d 5.24 d	Xe134 10.44 290 ms 1.1E16 y	Xe135	Xe136 8.87 2.1E20 y	Xe137 3.82 m	Xe138 14.08 m	Xe139 39.68 s
v ec/beta*	53 —	I131 8.02 d	1132	1133 9 s 20.8 h	1134 3.6 m 52.5 m	I135 6.57 h	I136 46.9 s 1.39 m	I137 24.51 s	I138 6.46 s

28

uantity: Becquerel 🛛 🛛 1.571	5+13	Accuracy Factor:	1E-02			
ime: Hours 💉 1		Number of timesteps	: 10 Number of	chains: 2		
Start Start in background	Reset	Show details	Create Nuclide Mixtu	re		
arent+Daughters	Half-life	N(atoms)	M(g)	A(Bq)	G(ke¥/s)	Sf Rate (/s)
5 Cs137	30.06 y	2.15E+22	4.88E+00	1.57E+13	2.58E+10	0
i Ba137 Stable	stable	5.32E+16	1.21E-05	0	0	0
6 Ba137 m	2.55 m	3.27E+15	7.44E-07	1.48E+13	8.83E+15	0
otal:		2.15E+22	4.88E+00	3.05E+13	8.83E+15	0
Download OExcel OCSV Sepa		137 Stable 🔶 56 Ba137 m				
pe of graph: Activities		137 Stable — 56 Ba137 m				
ype of graph: Activities		137 Stable <u>66 Ba</u> 137 m				

30

Nuclide mixtures

137Cs				*
Create	Edit	Delete	Save	Cancel
ame 137Cs				
50 UA G	sotope	Mass		
	206	Grams		

	Cs137			
	00101	1.5700E+13	4.8815E+0	
Edit 56	Ba137 s	0.0000E+0	1.2105E-5	
Edit 56	Ba137 m	1.4821E+13	7.4430E-7	
Edit				

37Cs		✓
Dosimetry and Shielding Do	se rate/Thickness graph Options	
Source strength	Shielding material	Dose rate (µSv/h)
Activity(Bq) 💙 3.05E	+13 Air 💙 100	0 cm 1.33E+06
Source	Shield	Detector
1	Source/detector distance (cm	m)
	100	· · · · · · · · · · · · · · · · · · ·
Start Reset		
Half-Value Shield Thickne	ess(cm)	2.59E+04
Tenth-Value Shield Thick	ness(cm)	5.50E+04
Equivalent Dose Rate Co	onstant Γ(mSv·m²/GBq/h)	4.35E-02
Gamma Dose Rate (µSv/	h)	1.33E+06
Effective Build-up factor		1.01E+00
Effective Number of Mear	Free Paths (u.d)	9.38E-03

32

Cs		
simetry and Shielding Dose rate.	/Thickness graph Options	
Source strength	Shielding material Dose rate (µSv/h)	
Activity(Bq) V 3.05E+13	Pb v 10 cm	
Source	Shield Detector	
-	Source/detector distance (cm)	
	100	
1		
Start Reset		
Half-Value Shield Thickness(cn	n)	9.40E-01
Tenth-Value Shield Thickness(:m)	2.43E+00
Equivalent Dose Rate Constant	tΓ(mSv·m²/GBq/h)	4.35E-02
Gamma Dose Rate (µSv/h)		1.62E+01
Effective Build-up factor		3.76E+00
Effective Number of Mean Free		1.26E+01