Godlike Productions - Discussion Forum
Users Online Now: 2,305 (Who's On?)Visitors Today: 1,307,299
Pageviews Today: 1,788,303Threads Today: 454Posts Today: 7,604
02:14 PM


Back to Forum
Back to Forum
Back to Thread
Back to Thread
REPORT COPYRIGHT VIOLATION IN REPLY
Message Subject D
Poster Handle 2be0rnot2be
Post Content
The dimension of a physical quantity can be expressed as a product of the basic physical dimensions mass, length, time, electric charge, and absolute temperature, represented by sans-serif symbols M, L, T, Q, and Θ, respectively, each raised to a rational power.

The term dimension is more abstract than scale unit: mass is a dimension, while kilograms are a scale unit (choice of standard) in the mass dimension.

As examples, the dimension of the physical quantity speed is length/time (L/T or LT−1), and the dimension of the physical quantity force is "mass × acceleration" or "mass×(length/time)/time" (ML/T2 or MLT−2). In principle, other dimensions of physical quantity could be defined as "fundamental" (such as momentum or energy or electric current) in lieu of some of those shown above. Most[citation needed] physicists do not recognize temperature, Θ, as a fundamental dimension of physical quantity since it essentially expresses the energy per particle per degree of freedom, which can be expressed in terms of energy (or mass, length, and time). Still others do not recognize electric charge, Q, as a separate fundamental dimension of physical quantity, since it has been expressed in terms of mass, length, and time in unit systems such as the cgs system. There are also physicists that have cast doubt on the very existence of incompatible fundamental dimensions of physical quantity.[4]

The unit of a physical quantity and its dimension are related, but not identical concepts. The units of a physical quantity are defined by convention and related to some standard; e.g., length may have units of meters, feet, inches, miles or micrometres; but any length always has a dimension of L, independent of what units are arbitrarily chosen to measure it. Two different units of the same physical quantity have conversion factors that relate them. For example: 1 in = 2.54 cm; then (2.54 cm/in) is the conversion factor, and is itself dimensionless and equal to one. Therefore multiplying by that conversion factor does not change a quantity. Dimensional symbols do not have conversion factors.
 
Please verify you're human:




Reason for copyright violation:







GLP