Godlike Productions - Discussion Forum
Users Online Now: 2,297 (Who's On?)Visitors Today: 1,174,287
Pageviews Today: 1,643,173Threads Today: 454Posts Today: 8,204
01:24 PM


Back to Forum
Back to Forum
Back to Thread
Back to Thread
REPORT ABUSIVE REPLY
Message Subject EVIDENCE OF GOD - Aether Physics Model
Poster Handle Divinity
Post Content
[link to www.holoscience.com]

...Since Bruce, and following the pioneering work of Hannes Alfven on an electric circuit model of stars, it has become clear to plasma cosmologists that the electrical z-pinch effect is instrumental in forming stars. Once formed, stars continue to be lit by electrical power delivered throughout the universe by cosmic transmission lines known as Birkeland current filaments. These giant filaments can be traced by their radio transmissions. Stars also trace the Birkeland currents in galaxies in the same way that electric streetlights trace the routes of electrical cables.

Stars are an electrical, not a thermonuclear, phenomenon. Consequently, a star's size, color and spectrum tell us nothing about its age. A red supergiant star is huge because it is under low electrical stress. It is not at the end of its life. And being under low stress it is not expected to explode. However, a blue star is under extreme electrical stress. We do not have to advance the ad hoc postulate that SN1987A was a red supergiant before it exploded. etc....


:perrattwin:


The crucial evidence for the electrical nature of supernovae must come from experiment and observation.

Anthony L. Peratt, Fellow, IEEE, published a seminal paper in the IEEE Transactions on Plasma Science, Vol. 31, No. 6, December 2003. It was titled "Characteristics for the Occurrence of a High-Current, Z-Pinch Aurora as Recorded in Antiquity." In it he explained the unusual characteristics of a high-energy plasma discharge. He discussed mega-ampere particle beams and showed their characteristic 56- and 28-fold symmetry. He wrote: "A solid beam of charged particles tends to form hollow cylinders that may then filament into individual currents. When observed from below, the pattern consists of circles, circular rings of bright spots, and intense electrical discharge streamers connecting the inner structure to the outer structure."

(snip)

These results verify that individual current filaments were maintained by their azimuthal self-magnetic fields, a property lost by increasing the number of electrical current filaments. The scaling is constant for a given hollow beam thickness, from microampere beams to multi-megaampere beams and beam diameters of millimeters to thousands of kilometers.

This scaling of plasma phenomena has been extended to more than 14 orders of magnitude, so the bright ring of supernova 1987A can be considered as a stellar scale "witness plate" with the equatorial ejecta sheet acting as the "plate" for the otherwise invisible axial Birkeland currents.

Peratt adds, "Because the electrical current-carrying filaments are parallel, they attract via the Biot-Savart force law, in pairs but sometimes three. This reduces the 56 filaments over time to 28 filaments, hence the 56 and 28 fold symmetry patterns. In actuality, during the pairing, any number of filaments less than 56 may be recorded as pairing is not synchronized to occur uniformly. However, there are 'temporarily stable' (longer state durations) at 42, 35, 28, 14, 7, and 4 filaments. Each pair formation is a vortex that becomes increasingly complex."

The images of SN 1987A shows the Birkeland currents around the star have paired to a number close to 28. The bright spots show a tendency toward pairing and groups of three. This witness plate model explains why the glowing ring is so nearly circular and is expanding very slowly - unlike a shock front. It is more like a cloud at night moving through the beams of a ring of searchlights.

If the equatorial ring shows the Birkeland currents in the outer sheath of an axial plasma current column, then the supernova outburst is the result of a cosmic z-pinch in the central column, focused on the central star. It is important to note that the z-pinch naturally takes the ubiquitous hourglass shape of planetary nebulae. No special conditions and mysteriously conjured magnetic fields are required.

>> Experimental and simulation derived geometries for extreme plasma currents in a plasma column. The Birkeland currents will only be visible where the plasma density is high. [Click image to enlarge]

It is also the shape of SN1987A with its three rings. It will be instructive for plasma cosmologists to watch closely the development of SN1987A's "necklace of incandescent diamonds." I do not expect the ring to grow as a shock-wave-produced ring would be expected to. Some bright spots may be seen to rotate about each other and to merge. It is an opportunity more rare and valuable than a diamond to be able to verify the electric discharge nature of a supernova. Supernova 1987A will be illuminating the future of plasma cosmology!

Plasma cosmologists have not ignored the pulsar, sometimes found in a supernova remnant. Healy and Peratt in "Radiation Properties of Pulsar Magnetospheres: Observation, Theory and Experiment," concluded, "the source of the radiation energy may not be contained within the pulsar, but may instead derive either from the pulsar's interaction with its environment or by energy delivered by an external circuit.... [O]ur results support the 'planetary magnetosphere' view, where the extent of the magnetosphere, not emission points on a rotating surface, determines the pulsar emission."

In other words, we do not require a hypothetical super-condensed object to form a pulsar. A normal stellar remnant undergoing periodic discharges will suffice. Plasma cosmology has the virtue of not requiring neutron stars or black holes to explain compact sources of radiation.

This completes the electrical sketch of supernova 1987A.


Postscript:

This discovery of the electrical nature of supernovae has implications back here on Earth. The extensive interdisciplinary scope of the Electric Universe model is highlighted by Peratt's recent discovery that objects from antiquity manifest 56- and 28-fold symmetry. These range from concentric petroglyphs around the world to geoglyphs (stone-rings), megaliths, and other constructs. The most renowned of the 56-fold symmetric megaliths is Stonehenge.
 
Please verify you're human:




Reason for reporting:







GLP